Pig Check

How accurately can we predict evolution?

Analytical prediction vs. simulation results

"Dominant" and "recessive" are not properties of alleles. They are descriptions of the phenotypes of heterozygotes.

Pigs: Half pure brown, half pure black; Death rate 0.5 for brown

PigCheck: Starting $Fr(A_1)=0.5$; Fitnesses = 0.5, 1, 1

Green line = prediction from model

Oragne dots = data from Mendelian Pigs

Green line = prediction from model

Orange dots = data from Mendelian Pigs

Pigs: 25% pure red, 75% pure spotted; Death rate 0.4 for red, many spots

PigCheck: Starting $Fr(A_1)=0.25$; Fitnesses = 1, 1, 0.6

Green line = prediction from model

Oragne dots = data from Mendelian Pigs

Green line = prediction from model

Orange dots = data from Mendelian Pigs

Pigs: 25% pure red, 75% pure spotted; Death rate 0.4 for few spots & many spots PigCheck: Starting $Fr(A_1)=0.25$; Fitnesses = 1, 0.6, 0.6

Green line = prediction from model

Oragne dots = data from Mendelian Pigs

Green line = prediction from model

Orange dots = data from Mendelian Pigs

Pigs: 25% pure red, 75% pure spotted; Death rate 0.4 for few spots & many spots PigCheck: Starting $Fr(A_1)=0.25$; Fitnesses = 1, 0.6, 0.6

Jon's results:

Students' results:

 $Fr(A_1)=0.25$; Fitnesses = 1, 1, 0.6

 $Fr(A_1)=0.25$; Fitnesses = 1, 0.6, 0.6

Challenge: Why was the prediction better for Ex. 2 than Ex. 3?